姓 名:李清光 副教授,硕 导 邮箱:leeqg12@163.com;qgli3@gzu.edu.cn |
1. 研究领域与方向
稳定同位素地球化学;矿山环境污染过程;煤与煤层气地质学
2. 学习与工作经历
2020.01-至今,环球ug注册会员,资源与环境工程学院,副教授
2016.12 -2019.12,环球ug注册会员,资源与环境工程学院,讲师
2012.09-2015.07,中国科学院大学,地球与行星科学学院,博士
2009.09-2012.07,中国科学院地球化学研究所,硕士
3. 学术任职及奖励
日本地球化学学会会员
中国矿物岩石地球化学学会终身会员
中国地学学会会员
Journal of Hydrology/Science of The Total Environment/Environmental Pollution/Fuel/Geology/Energy & Fuels/Energy Science & Engineering等期刊审稿人
4. 招生方向:地质学(地球化学方向)
资源与环境(环境工程方向)
5. 教学课程
讲授本科生课程:岩溶地质学、环境地质学
讲授研究生课程:高等地球化学、同位素地质学、环境同位素
讲授博士生课程:同位素地球化学
6. 教改项目
教育部产学研协同育人教改项目,以提升地质专业学生科学与人文素养为导向的STS教育培养模式研究,230804270807225,2023/09-2024/09,结题,主持
7. 近年主持承担的主要科研项目
[1] 贵州省基础研究计划重点项目,黔科合基础-ZK[2024]重点019,基于同位素热力学平衡分馏与质量守恒定量判识不同储层煤层气排采贡献研究,2024/04—2028/03,在研,主持
[2] 国家自然科学基金地区项目,42267033,喀斯特地区煤系黄铁矿氧化过程中硫歧化反应同位素分馏机理,2023/01-2026/12,在研,主持
[3] 国家自然科学基金地区项目,41867050,喀斯特中高硫煤矿区矿井水酸化去气动力学过程及CO2排放规模研究,2019/01-2022/12,结题,主持
[4] 国家重点研发计划专题,2019YFC1805302,有色金属矿区地下水重金属运移模拟及污染通量量化,2020/01-2023/12,结题,子课题负责人
[5] 贵州省基础研究计划,黔科合基础[2019]1096,基于一级反应动力学的矿井水酸化去气过程及其碳排放效应研究,2019/01-2021/12,结题,主持
[6] 环球ug注册会员实验室开放项目,SYSKF2018-1-108,地下水DIC溯源的碳同位素地球化学研究,2018/01-2018/08,结题,主持
[7] 国家自然科学基金面上项目,41772122,煤层水与煤层气主组分δ13C值的分布及δ13CDIC示踪指标的对比研究,2018/01-2021/12,结题,专题负责人
[8] 环球ug注册会员人才培育项目,黔科合平台人才[2017]5788,基于瑞利分馏的矿井水酸化去气DIC碳同位素演化特征研究,2018/03-2020/03,结题,主持
[9] 环球ug注册会员引进人才科研项目,贵大人基合字(2017)73号,矿井水酸化过程机制及DIC碳同位素响应特征-以织金矿区为例,2018.01-2019.12,结题,主持
8. 学术成果:
[1] Du, S., Long, E., Qi, Y., Ju, Y., Wu, P., Fu, Y., Gu, S., Zhang, H., & Li, Q*. (2025). The evolution of sulfur during coalification in marine land interaction environments based on the sequential extraction of different sulfur species. Marine and Petroleum Geology, 173, 107266.
[2] An, L., Li, Q.*, Wu, P., Lu, W., Li, X., Zhang, C., & Zhang, R. (2024). Potential impacts of coal mining activities on nitrate sources and transport in a karst river basin in southwest China. Environmental Science and Pollution Research, 31(10), 15412-15423.
[3] Li, Q., An, L., Wu, P., Wang, S., Gu, S., Yuan, Y., & Fu, Y. (2023). The introduction of nitrogen from coal into the surface watershed nitrogen cycle due to coal mining activity. Science of The Total Environment, 900, 165822.
[4] Li, Q., Wu, P., Wang, S., Huang, J., Lu, W., Tan, D., Gu, S., & Fan, B. (2023). The non-coevolution of DIC and alkalinity and the CO2 degassing in a karst river affected by acid mine drainage in Southwest China. Science of The Total Environment, 900, 165856.
[5] Li, Q., Wu, P. (2022). Research progress on the acidification features of coal mine drainage and its carbon emission effect during coal exploitation. Environ. Eng. Manag. J. 21 (12), 1975–1985.
[6] Li, Q., Wu, P., Li, X., Gu, S., Zhang, R., Zha, X., Qin, S. (2022). The effect of mining development in karst areas on water acidification and fluorine enrichment in surface watersheds. Ecotoxicology and Environmental Safety, 242: 113954
[7] Li, Q., Ju, Y., Gu, S., Wu, P., Wu, L., Xia, P., Chang, X.X. (2022). Coalbed Methane Accumulation Indicated by Geochemical Evidences from Fracture-filling Minerals in Huaibei coalfield, East China. Geochemistry International, 60(1), 52-66.
[8] Lu, Z., Li, Q. *, Ju, Y., Gu, S., Xia, P., Gao, W., & Gong, C. (2022). Biodegradation of coal organic matter associated with the generation of secondary biogenic gas in the Huaibei Coalfield. Fuel, 323, 124281.
[9] Huang, J., Li, Q.*, Wu, P., Wang, S., Guo, M., & Liu, K. (2022). The effects of weathering of coal-bearing stratum on the transport and transformation of DIC in karst watershed. Science of The Total Environment, 156436.
[10] Huang, J., Li, Q.*, Wu, P., Wang, S., Gu, S., Guo, M., & Fu, Y. (2022). The buffering of a riverine carbonate system under the input of acid mine drainage: Example from a small karst watershed, southwest China. Frontiers in Environmental Science, 10, 1020452.
[11] Lu, Z., Tao, M., Li, Q.*, Wu, P., Gu, S., Gao, W., & Yan, Z. (2022). Gas geochemistry and hydrochemical analysis of CBM origin and accumulation in the Tucheng syncline in western Guizhou Province. Geochemical Journal, GJ22005.
[12] Du, S., An, L., Huang, J., Li, Q. *, Wu, P., & Guo, X. (2022). Sources and migration characteristics of fluorine in the river water of a small karst watershed influenced by coal mining. Frontiers in Environmental Science, 1272.
[13] Li, Q., Wu, P., Zha, X., Li, X., Wu, L., & Gu, S. (2018). Effects of mining activities on evolution of water chemistry in coal-bearing aquifers in karst region of Midwestern Guizhou, China: evidences from δ13C of dissolved inorganic carbon and δ34S of sulfate. Environmental Science and Pollution Research, 25(18), 18038-18048.
[14] Li, Q., Chen, P., Chen, J., & Hu, Y. (2018). Modes of occurrence of Cr, Co, Ni, Cu, Cd, and Pb in the main coal seams of southwestern China’s Nantong coalfield. Geochemistry International, 56(12), 1220-1232.
[15] Li, Q., Ju, Y., Chen, P., Sun, Y., Wang, M., Li, X., & Chen, J. (2017). Biomarker study of depositional paleoenvironments and organic matter inputs for Permian Coalbearing Strata in the Huaibei Coalfield, East China. Energy & Fuels, 31(4), 3567-3577.
[16] Li, Q., Ju, Y., Lu, W., Wang, G., Neupane, B., & Sun, Y. (2016). Water-rock interaction and methanogenesis in formation water in the southeast Huaibei coalfield, China. Marine and Petroleum Geology, 77, 435-447.
[17] Li, Q., Ju, Y., Bao, Y., Yan, Z., Li, X., & Sun, Y. (2015). Composition, origin, and distribution of coalbed methane in the Huaibei Coalfield, China. Energy & Fuels, 29(2), 546-555.
[18] Li, Q., Ju, Y., Sun, Y., & Bao, Y. (2015). The Population Features of Methanogens and the Biodegradation of Hydrocarbons in Coal Organic Matters. Acta Geologica Sinica (English Edition), 1.
[19] Qin, S., Li, X., Huang, J., Li, W., Wu, P., Li, Q., & Li, L. (2024). Inputs and transport of acid mine drainage-derived heavy metals in karst areas of Southwestern China. Environmental Pollution, 343, 123243.
[20] You, G., Gu, S., Li, Q., Guo, Z., Zhao, F. & Zhang, X. (2024). Heavy metals mobilization and attenuation in Cd-rich Niujiaotang legacy Pb-Zn tailings of southwestern China. Geochemical Journal, 58(2), 80-93.
[21] Chen, S., Zhang, C., Qiu, L., Li, Q., Zhang, K., & Luo, H. (2022). Biogeochemical transformation of sulfur and its effects on arsenic mobility in paddy fields polluted by acid mine drainage. Chemosphere, 293, 133605.
[22] Zhao, F., Gu, S., Li, Q., Guo, Z., Zhang, X., You, G., & Zhang, T. (2023). Persistent thallium enrichment and its high ecological risks developed from historical carbonaceous Hg-Tl mining waste. Science of The Total Environment, 902, 166068.
[23] Qin, S., Li, X., Wu, P., & Li, Q. (2022). Spatial–temporal variations and multi-statistical analysis of contaminants in the waters affected by acid-mining drainage in Karst area: a case of coal-mining area in Zhijin County. Environmental Earth Sciences, 81(10), 1-17.
[24] Wu, J., Yang, H., Yu, W., Yin, C., He, Y., Zhang, Z., Li, Q., & Chen, J. (2022). Effect of Ecosystem Degradation on the Source of Particulate Organic Matter in a Karst Lake: A Case Study of the Caohai Lake, China. Water, 14(12), 1867.
[25] Guo, Z., Gu, S., Li, Q., Zhang, T., Xie, X., & Zhao, F. (2022). Carbonate mineral controls the transport of Cd from tailings to surrounding soils: An example from Cd-rich niujiaotang Zn mine in Guizhou Province, southwest China. Frontiers in Environmental Science, 10, 1045093.
[26] Li, X., Ju, Y., Song, Y., Yan, Z., & Li, Q. (2022). Particle Size and Internal Structure of Deformed Coal: Microstructure and Adsorption/Desorption Characteristics of CO2 and CH4. Front. Unconventional Natural Gas Geoscience, 10, 876196.
[27] Tan, D., Li, Q., Wang, S., Yeager, K. M., Guo, M., Liu, K., & Wang, Y. (2021). Diel variation of CH4 emission fluxes in a small artificial lake: Toward more accurate methods of observation. Science of The Total Environment, 784, 147146.
[28] Zhong, Y., Xia, P., Ning, S., Fu, Y., Li, Q., & Yu, Y. (2021). Geochemical characteristics and its geological application of over-mature Longmaxi shale gas in the northern Guizhou area, China. Arabian Journal of Geosciences, 14(18), 1-9.
[29] Li, X., Zhang, R., Li, Q., Wu, P., & Ye, H. (2021). Rare earth elements and yttrium (REY) in coal mine drainage from Southwest China: Geochemical distribution and resource evaluation. Science of The Total Environment, 782, 146904.
[30] Jiang, W., Xia, P., Li, Q., Fu, Y., & Mou, Y. (2020). Compositional and Isotopic Characteristics for The Longmaxi Shale Gas in The Northern Guizhou Area, South China.
[31] Chen, J., Chen, P., Yao, D., Huang, W., Tang, S., Wang, K., Li, Q., & Wang, R. (2018). Geochemistry of uranium in Chinese coals and the emission inventory of coal-fired power plants in China. International Geology Review, 60(5-6), 621-637.
[32] Ju, Y., Sun, Y., Sa, Z., Pan, J., Wang, J., Hou, Q., Li, Q., & Liu, J. (2016). A new approach to estimate fugitive methane emissions from coal mining in China. Science of the Total Environment, 543, 514-523.
[33] Wang, G., Ju, Y., Yan, Z., & Li, Q. (2015). Pore structure characteristics of coal-bearing shale using fluid invasion methods: A case study in the Huainan–Huaibei Coalfield in China. Marine and Petroleum Geology, 62, 1-13.
[34] Bao, Y., Ju, Y., & Li, Q. (2015). Accumulation dynamics mechanism and gas origin of coalbed methane in Huainan and Huaibei coalfields, Eastern China. Acta Geologica Sinica (English Edition), 1.
[35] Ju, Y. W., Li, Q. G., Yan, Z. F., Sun, Y., & Bao, Y. (2014). Origin types of CBM and their geochemical research progress. Journal of China Coal Society, 39(5), 806-815.
[36] Ju, Y., Wang, G., Bu, H., Li, Q., & Yan, Z. (2014). China organic-rich shale geologic features and special shale gas production issues. Journal of Rock Mechanics and Geotechnical Engineering, 6(3), 196-207.
[37] Wang, G., Ju, Y., Bao, Y., Yan, Z., Li, X., Bu, H., & Li, Q. (2014). Coal-bearing organic shale geological evaluation of Huainan–Huaibei Coalfield, China. Energy & Fuels, 28(8), 5031-5042.
[38] Bao, Y., Wei, C., Wang, C., Wang, G., & Li, Q. (2014). Geochemical characteristics and generation process of mixed biogenic and thermogenic coalbed methane in Luling coalfield, China. Energy & Fuels, 28(7), 4392-4401.
[39] 黄江浔,李清光*,安丽,等.喀斯特小流域地表水碳酸盐系统化学平衡对酸性矿山废水的缓冲作用[J].中国岩溶,2023,42(01):19-28.
[40] 王晤岩,李清光*.淡水碳酸盐湖泊中CaCO3-—CO32—HCO3-—CO2化学平衡对CO2的缓冲作用——以贵州百花湖为例[J].中国岩溶,2021,40(04):572-579.
[41] 李清光,吴攀,顾尚义,刘沛,胡海洋,高为,龚朝兵,常溪溪.黔西某煤层气开发区块产出水有毒有害元素污染特征及其环境效应[J].地球科学,2019,44(09): 2862-2873.
[42] 路照,李清光*.淮北煤田煤系有机质中多环芳烃(PAHs)来源与组成分析[J].煤炭与化工,2022,45(08):128-134.DOI:10.19286/ j.cnki.cci.2022.08.036.
[43] 李清光,王仕禄*.滇池流域硝酸盐污染的氮氧同位素示踪[J].地球与环境,2012,40(03): 321-327. DOI:10.14050/j.cnki.1672-9250. 2012.03.002.
[44] 查学芳,吴攀,李学先,陈世万,黄家琰,李清光,陈思睿.基于水化学与硫同位素的卡林型金矿区岩溶水文地球化学特征及控制因素[J/OL].环境科学:1-15[2022-11-04].DOI:10.13227/j.hjkx.202112141.
[45] 陈健,陈萍,姚多喜,郭江峰,刘震,陆佳佳,李清光,刘文中,胡友彪.云南省临沧市勐托新近系褐煤的微量元素地球化学特征[J].地学前缘,2016,23(03):83-89.DOI:10.13745/j.esf.2016.03.011.
[46] 卜红玲,琚宜文,王国昌,房立志,颜志丰,李清光.淮南煤田煤系泥页岩组成特征及吸附性能[J].中国科学院大学学报,2015,32(01):82-90.
[47] 黄强盛,李清光,卢玮琦,杨伟红,王仕禄.滇池流域地下水、河水硝酸盐污染及来源[J].地球与环境,2014,42(05):589-596.
[48] 琚宜文,王桂粱,卫明明,谭锋奇,鲍园,王国昌,李清光,NeupaneBhupati.中新生代以来华北能源盆地与造山带耦合演化过程及其特征[J].中国煤炭地质,2014,26(08):15-19+38.
[49] 琚宜文,李清光,谭锋奇.煤矿瓦斯防治与利用及碳排放关键问题研究[J].煤炭科学技术,2014,42(06):8-14.DOI:10.13199/j.cnki. cst.2014.06.002.
[50] 琚宜文,李清光,颜志丰,孙盈,鲍园.煤层气成因类型及其地球化学研究进展[J].煤炭学报,2014,39(05):806-815.DOI:10.13225 /j.cnki.jccs.2014.0086.